产品中心

隧道台车

隧道台车

隧道施工衬砌台车
隧道施工中常用砼衬砌台车的设计与使用。
简易衬砌

简易

台车一般设计为钢拱架式,使用标准组合钢模板,可不设自动行走,采用外动力拖动,脱立模板全部为人工操作,劳动强度大。该类衬砌台车一般用于短隧道施工,特别是对于平面和空间几何形状复杂、工序转换频繁、工艺要求严格的隧道砼衬砌施工,其优越性更明显。同时工程成本较低。简易台车使用中大部分采用人工灌注砼,小金口简易衬砌台车采用砼输送泵车灌注,因此台车的刚度应特别加强。有的简易衬砌台车也采用整体钢模板,但脱立模仍然采用丝杆千斤,无自动行走,该类台车一般采用砼输送泵车灌注。简易衬砌台车普遍采用组合钢模板,组合钢模板一般为薄板制作,在设计过程中应考虑钢模板的刚度,所以钢拱架的榀间距不宜过大。如果钢模板长度为1.5m,则钢拱架的榀间距平均应不大于0.75m,且钢模板的纵向接头应设在榀与榀之间,以便于安装模板扣件和模板挂钩。如果使用输送泵灌注,则灌注速度不宜过快,否则将引起组合钢模板变形,尤其在衬砌厚度大于500mm以上时更应放慢灌注速度。在封顶灌注时应加倍小心,随时注意砼的灌注情况,防止注满后强行灌注砼,否则将导致爆模或台车变形损坏。

全液压

主要用于中长隧道施工中,对施工进度、砼表面质量要求较高。此类衬砌台车设计为整体钢模板、液压油缸脱立模,施工中靠丝杆千斤支撑,电动减速机自动行走或油缸步进式自动行走,全部采用砼输送泵车灌注。大部分衬砌台车为该类台车。设计该类衬砌台车时,在满足通过净空要求的情况下,应考虑门架内侧斜支撑下部安装位置,尽可能靠近立柱下部,使之受力最好。门架横梁应足够高,常规铁路隧道不小于400mm,公路隧道不小于5500mm。模板端面与门架间的调整最小距离不小于250mm,否则将造成前后衬砌段搭接困难。
用该类衬砌台车时应注意两侧走行轨的铺设高差不大于1%,否则将造成丝杆千斤和顶升油缸变形。在有坡道的隧道内衬砌时,为了调整衬砌标高,会造成台车前后端的高差、模板端面与门架端面不平行,将使模板与门架之间形成很大的水平分力,造成模板与门架之间的支撑丝杆千斤错位,导致千斤、油缸损坏。因此在设计时,应充分考虑前后高差造成水平分力的约束结构或调整系统。在定位立模时必须安装卡轨器,旋紧基础丝杆千斤、门架顶地千斤和模板顶地千斤,如有必要还可采用其它措施加固下模拱脚位置,使门架受力尽可能小,防止跑模和门架变形。

网架

网架式衬砌台车在结构上与传统衬砌台车相比作了较大改动。传统衬砌台车在施工中台车门架是受力件,它受的侧压力较大,随门架的刚度大小产生不等变形,且不宜在有较大横坡和纵坡的隧道内直接工作,对工作环境要求较高,否则将造成台车整体变形和损坏。而网架式衬砌台车门架在施工中为不受力件,其模板的支撑件为边模拱脚的顶地丝杆千斤,门架只在脱立模、行走过程中才受力,且所受之力垂直向下,没有侧压力,只需按台车自重设计门架足够的刚度就不会变形。在有坡道的隧道中施工或行走时,不论是横坡还是纵坡,都可以通过门架下部的顶升油缸进行高度调节,使台车整体处于水平状态,台车整体不存在前倾力和侧倾力,保证了台车的整体平稳性。因台车完全取消了支撑用的丝杆千斤,台车定位简单,能非常快地调整到衬砌几何位置,节约了大量的人力物力,提高了工效,缩短了工作循环周期,相应地节约了工程成本。
为保证顶拱模板的刚度和强度,上部台架设计成网架式杆件结构,使之受力最好,模板不会在衬砌过程中变形移位。在整个台车中最薄弱的环节是下模板和下模支撑斜杆,因此在设计下模板时应充分计算下模的受力大小,尽可能加宽弧板宽度和厚度,支撑斜杆必须通过压杆稳定计算,保证斜杆有足够的刚度和强度,不至于在使用中发生变形弯曲,导致跑模。在计算过程中应充分考虑砼的衬砌厚度、坍落度、灌注速度、骨料大小以及是否为钢筋砼等因素的影响。下模拱脚顶地丝杆千斤(见图4)是主要受力件,整个模板在衬砌圆心中线以下时,完全靠它支撑,因此在设计时应考虑其结构形式和刚度大小。在使用中,该千斤必须牢牢顶紧于地面,不允许有松动现象,如有必要,可用其它件进行加固,作为辅助支撑,防止跑模和台车向下移位。应注意的是,作为台车纵向定位的卡轨器和基础丝杆千斤必须拧紧、卡牢和顶牢钢轨,特别是在坡道上衬砌时更应注意。该类衬砌台车主要用于大跨度隧道和地下洞室施工。如果采用传统式全液压衬砌台车,则门架设计难以满足使用要求,造成门架变形损坏,首先是门架横梁扭曲变形,最终导致跑模。如果加高横梁,加大立拄、下纵梁、端面斜支撑截面,则造成不必要的浪费,而采用网架式衬砌台车可克服以上困难。由于该类衬砌台车为大跨度施工,设计时应考虑其可操作性,其工作梯和工作走道应能方便到达每一个工作位置。

技术参数

编辑
01.规格:6-12.5米
02.最大衬砌长度  L=12m{可根据用户意愿调整}
03.最大通过能力{高度*宽度} 施工的同时不影响过车
04.爬行能力  4%
05.行走速度  8m/min
06.总功率:22.5KW 行走电机7.5KW*2=15KW油泵电机7.5KW
07.液压系统压力  Pmqx=16Mpa
08.模板单边脱模量  Amin=150
09.水平油缸左右调整量  Bmax=100mm
⒑  顶升油缸 300mm
⒒油缸最大行程  侧向油缸 300mm
⒓  水平油缸 250mm


产品关键技术

编辑

台车结构型式

可采用液压式和机械式。经分析比较液压式对台车架刚性要求低,结构型式灵活,重量轻,加工要求和施工中铺设轨道的标高要求低,使用方便,但对液压缸自锁性要求高,衬砌中液压缸不允许回缩。机械式则相反,由于一个电动机要驱动数个丝杠传动,对各传动轴同轴度要求高,且台车架必须有较大的刚度,结构尺寸准确,因结构较重、加工要求高,而且因丝杠是同步动作(不象液压传动,各液压缸可同步,也可单独动作)因此当轨道标高误差(各点不在同标高)较大时,将直接影响模板位置,从而影响衬砌质量。经分析比较选用液压传动方案,对液压缸采取液压锁平衡阀等措施,使液压缸自锁;同时配套采用丝杠机构进行机械锁定,并加强模板的支承,保证了模板在衬砌时不回缩,不变形。实践证明衬砌台车采用液压式较合理,是发展方向。

车架结构优化

台车采用液压传动,使台车架结构简化,重量减轻,同时也提高了结构的灵活性和多样性,经各种台车架结构方案的分析比较、强度计算、优化选择9m四门架12m主门架结构方案,其结构重量比机械式减轻40%以上,制作成本降低25%以上。

钢模

钢模是台车的工作装置,其外表质量和外形尺寸精度直接决定混凝土衬砌质量,同时,又是加工难度最大的部件,制定了合理的加工、焊接工艺,设计并加工专用拼装焊接胎模,以保证整体外形尺寸的准确度,尽量减少焊接变形,保证外表面光滑,无凹凸等缺陷。为控制相邻模板的错台,采用过盈配合的稳定销将相邻模板的连接板固定为一体,有效控制了由于螺栓孔的间隙造成的相邻模板的错台问题。成功地解决了上述难题后,保证了砼衬砌质量。

支承位置确定

衬砌混凝土的全部质量经台车钢模传给支承机构,再传给门架。衬砌混凝土呈固液状态,对顶部、侧向产生较大的垂直压力和侧向压力,同时产生较大的浮力,当上浮力超过垂直压力和台车的自重时,台车将呈上浮状态,将不能正常工作。为解决此项技术难题,经仔细计算、优化设计、合理选择各支承位置。即在门架内侧的下纵梁与地面进行支承,避免侧压力使门架立柱内收,且在门架外侧与侧模纵梁处有数道水平支承,在门架上横梁与上纵梁处采用数道垂直支承(两端门架横处布置有顶部液压缸,中为垂直支承丝杠),在台车纵向成均布状。液压缸采用液压锁锁定,同时采用支承丝杠进行机械锁定,保证了衬砌施工中液压缸不回缩,模板不变形。